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Abstract 

It is the aim of this work to study affine connections whose holonomy group is contained in 
Gl(n, H). These connections arise in the context of hypercomplex geometry. We study the case 
of homogeneous hypercomplex manifolds and introduce an affine connection which is closely 
related to the Obata connection [M. Obata, Japan J. Math. 26 (1956) 43-77]. We find a fam- 
ily of homogeneous hypercomplex manifolds whose corresponding connections are not flat with 
holonomy contained in Sl(n, H). We consider first the 4-dimensional case and determine all 
the 4-dimensional real Lie groups which admit integrable invariant hypercomplex structures. We 
describe explicitly the Obata connection corresponding to these structures and by studying the 
vanishing of the curvature tensor, we determine which structures are integrable, obtaining as a 
byproduct a self-dual, non-fiat, Ricci fiat affine connection on N4 admitting a simply transitive 
solvable group of affine transformations. This result extends to a family of hypercomplex man- 
ifolds of dimension 4n, n > 1, considered in [M.L. Barberis, I.D. Miatello, Quart. J. Math. 
Oxford 47 (2) (1996) 389--404]. We also give a sufficient condition for the integrability of hy- 
percomplex structures on certain solvable Lie algebras. © 1999 Elsevier Science B.A. All right 
reserved. 
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1. Introduction 

A hypercomplex structure on a 4n-dimensional C °° manifold M is a pair {Ji,  J2} of 

fibrewise endomorphisms of the tangent bundle T M  of M satisfying: 
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./2 = - I ,  ix = 1,2, J1J2 = - J 2 J l ,  (1.1) 

N,~ = 0 ,  ix = 1,2, (1.2) 

where I is the identity on the tangent space TpM of M at p for all p in M and N~ is the 

Nijenhuis tensor corresponding to J~: 

No(X ,  Y) = [JaX, JaY] - [X, Y] - Ja([X, JaY] + [JaX, Y]) 

for all X, Y vector fields on M. I f  we set J3 = JIJ2 it is well known that (1.2) implies 

N3 -- 0. When we require {J1, J2} to satisfy only (1.1) it is called an almost hypercomplex 

structure. 
The quaternionic space H n provides the standard model of  a hypercomplex structure. 

Consider the real coordinates (Xl, Yl, v l ,  Wl . . . . .  Xn, Yn, Vn, wn) corresponding to a point 
(ql . . . . .  qn) in H n, where ql = xl + iyt + j v t  + kwl ,  1 <<. l <<. n. Then, 

J1 (O/OXl) = O/Oyt, Jl (O/O1)l) -~" O/OWl, 1 <. l <. n, J1 = - I ,  

Jz(OlOxl) = OIOvl, J2(OIOyD = -OlOwl ,  1 <~ l <~ n, j 2  = - I ,  

defines a hypercomplex structure on H". 
Let M and M'  be two manifolds admitting hypercomplex structures {Jl, J2} and {J~, J~}, 

respectively. A C °o map f : M ~ M I is called hypercomplex (with respect to {Jl, J2} and 

{J(, J ~ } ) i f t h e d i f f e r e n t i a l d f o f f  satisfies d f  Ja = J~ d f ,  ix = 1, 2,thatis,  f :  (M, Ja) --+ 
(M' ,  J~) is holomorphic for ix = 1, 2. 

Assume that a 4n-dimensional manifold M admits an atlas of  charts {(Ua, ~0a)} such that 

the transition functions ~Oa o ~Ob I : ~Ob(Ua N Ub) ~ ~oa(U, N Ub) are hypercomplex with 
respect to the standard hypercomplex structure on  ~4n ~_ Hn considered above. It turns 

out that, by transferring the standard hypercomplex structure from [~4n to M by means of 

these charts, we obtain a globally defined hypercomplex structure on M. A hypercomplex 

structure {Jl, ./2} on M is called integrable when it is obtained in the way just described. 
In contrast with Newlander-Nirenberg 's  result for the complex case (cf. [13], Theo- 

rem 1.1), not every hypercomplex structure is integrable: the hypercomplex structures on 

SU(3) and S 0 ( 6 ) / S U ( 2 )  constructed in [11] provide such an example (see Section 2). 
Moreover, it can be shown that a manifold admitting an integrable hypercomplex structure 

is necessarily affine; on the other hand the K 3 surfaces are examples of  non-affine manifolds 
which admit hypercomplex structures (cf. [6]). 

Associated with every hypercomplex structure 7-1 on M there is a canonical torsion-free 
affine connection V ~.  It is known that 7-/is integrable if and only if V ~ is flat (cf. [1,15]). 
We will use this fact together with the results in [4] to obtain Theorem 3.6 (Section 3.1). 

2. The Obata connection 

We start recalling that, given an arbitrary affine connection V on M, the torsion, curvature 
and Ricci tensor fields T, R and Ric  are defined as follows: 
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T(U, V) = V u V  - V v U  - [U, V], 

R(U, V) = [Vu, Vv]  - Vw, v 1, 

Ric(U, V) = t r (R( . ,  U)V),  

3 

(2.1) 

(2.2) 

(2.3) 

for U, V vector fields on M, where t r (R( . ,  U)V) denotes the trace of  the map Z ---> 

R(Z, U)V. We call V torsion-free when T ----- 0. If  V is torsion-free and R = 0 (resp. 

Ric ~ 0) then V is called flat (resp. Ricci flat). 

L e m m a  2.1. Let V be a torsion-free connection. Then Ric is symmetric if and only if 

R(X,  Y) is traceless for all vectorfields X, Y on M. 

Proof.  Since V is torsion-free, the Bianchi identity together with the Jacobi identity gives 

Ric(X,  Y) = Ric(Y, X) - t r (R(X, Y)) 

and the lemma follows. [] 

Every hypercomplex structure on M uniquely determines an affine torsion-free connec- 

tion with respect to which the corresponding endomorphisms are parallel, as the following 

result states. 

T h e o r e m  2.2 (Re(. [15]). Let 7-/ ={J l ,  J2} be an almost hypercomplex structure on M. 
Then M admits a unique affine connection V 7-t such that ~7 ~ Ja = O, et = 1,2, with torsion 

1 3 tensor T 7~ -g ~-]~=l Nc~. Moreover, 7-( is hypercomplex if and only if V ~ is torsion-free. 

The connection V ~ of the above theorem will be called the Obata connection throughout 

the paper. It is given by the following formula (cf. [2]): 

V ~ Y =  1 X 1 • .. 2[ ' Y] + -12 Z J~C[J~X, J×Y] + [J/~Y, JyX]) (2.4) 
(c~,lL y ) 

3 3 
1 1 

Z Ju([Je~X, Y] + [Jc~V, X]) + ~ Z N,~(X, Y), (2.5) +g 
ff=l c~=l 

where ,/3 = JJ J2, (a, fl, y)  runs over the cyclic permutations of  (1, 2, 3) and X, Y are 

vector fields on M. 
Let 7-/ ={J l ,  J2} be an almost hypercomplex structure on M. For each p E M, let 

Qp denote the Lie subalgebra of  End(TpM) generated by the endomorphisms induced by 

{J1, J2} on the tangent space TpM. The centralizer of  Qp in Gl(TpM) is isomorphic to 
Gl(n, H) (dim M = 4n). Using this identification it follows that the condition V~J~, = 0, 

= 1,2, in Theorem 2.2 is equivalent to Hol(V ~) C GI(n, H), where Hol(V ~) is the 

holonomy group of V ~.  
If  Ric ~ (resp. R ~ )  denotes the Ricci tensor (resp. curvature tensor) of V 7~, it is well 

known that when V 7~ is torsion-free, Ric 7~ is skew-symmetric (cf. [2]). Therefore, as a 

corollary to Lemma 2. i we obtain the following. 
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Corol lary  2.3. I f ~  is hypercomplex, V ~ is Ricci flat if and only if RT~(X, Y) is traceless 

for all vector fields X, Y on M. 

The following result establishes a necessary and sufficient condition for a hypercomplex 

structure to be integrable, in terms of its Obata connection. 

Theorem 2.4 (Ref. [15]). A hypercomplex structure 7-[ is integrable if and only if V ~ is 

flat. 

3. The homogeneous  case 

Let M = G / K  be homogeneous, i.e. G and K are Lie groups with K closed in G. A 

hypercomplex structure {Jl, J2} on G / K  is said to be (left) invariant (or homogeneous) 

if r (g)  : G / K  ~ G/K ,  hK --~ ghK is hypercomplex with respect to {J~, J2} for every 

g 6 G. In this case the Obata connection is G-invariant, i.e. r (g)  is an affine transformation 

for every g ~ G. Let g and f denote the Lie algebras of  G and K, respectively. Recall that 

G / K  is called reductive when f admits an Ad(K)-invariant complement in g, where Ad 

denotes the adjoint representation of  G in ,q. 

Existence of  invariant hypercomplex structures on G / K  with compact G was studied 

in [11]. It can be shown that in the reductive case, no invariant hypercomplex structure 

is integrable. In fact, Doi [7] proved that a reductive homogeneous space G / K  with real 

semisimple G does not admit a torsion-free, fiat, G-invariant affine connection. This ob- 

struction, together with Theorem 2.4, implies the following. 

Proposi t ion 3.1. Let M = G / K be a reductive homogeneous space with real semisimple G 
admitting an invariant hypercomplex structure. Then the corresponding Obata connection 

is non-flat. In particular, no invariant hypercomplex structure on M is integrable. 

It follows from the above proposition that the invariant hypercomplex structures on S U (3) 

and S0(6 ) /SU(2 )  constructed in [11] are not integrable; that is, the corresponding Obata 

connections are not flat. 

Recall that a reductive homogeneous space G / K  admits two canonical invariant con- 
nections V and V p such that V is torsion-free and has the same geodesics as V I (in [14] 
these connections are referred to as the canonical connections of the first and second kind, 

respectively). We observe that the connection V ~ associated to an invariant hypercomplex 

structure ~ on G / K  is different from V', but V ~ is rigid with respect to V I, i.e. the tensor 
field S(X, Y) = V~Y - Vx~Y is parallel with respect to V I (cf. [12]). In general, V 7~ is 
also different from V (see Remark 3.9). 

In [4] we classify the invariant hypercomplex structures on 4-dimensional real Lie groups; 
that is, we consider the case K ---- {e} and dim G = 4. In Section 3.1 we shall compute 
the Obata connections associated to such structures in order to determine, by means of  
Theorem 2.4, the ones which are integrable. 
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A hypercomplex structure on a 4n-dimensional real Lie algebra .q is a pair {J l ,  J2} of 

endomorphisms of  t satisfying Eqs. (1.1) and (1.2) on .q. If G is a Lie group with Lie 

algebra g it follows, by left translating {Jl, &}, that there is a one-to-one correspondence 

between hypercomplex structures on .q and invariant hypercomplex structures on G. Using 

this correspondence, the Obata connection V 7~ associated with an invariant hypercomplex 

structure 7-[ = {JI ,  J2} on G can be regarded as a .q-valued bilinear form V ~ : .q × ~1 --+ !~ 
satisfying the following properties: 

V f f Y  - V ~ X  = [X, Y], (3.1) 

for X, Y in t, ot = 1, 2 (see also Eq. (2.4)). Eq. (3.2) says that the endomorphisms Vff, 

X 6 t ,  belong to the centralizer of {Jl, J2} in End(~) ,  which is isomorphic to ,ql(n, H), 

the Lie algebra of Gl(n, H). The following lemma will be useful when trying to determine 
whether V 7~ is Ricci fiat. 

L e m m a  3.2. V ~ is Riccif lat  i f  and only if tr(Vff ) = O for  all X in .q' = [,q, t,~]. 

Proof.  In view of  Corollary 2.3 we have to show that R 7~ is traceless if and only iftr(Vff ) =- 
0 for all X in ,q' = [.q, ~]. For U, V in ,q we have 

t r (R~ (U, V)) = tr([Vff, Vv ~] - Vlu.v 1 ) ~  = - t r ( V ~ ,  vl) 

and now the lemma follows. [] 

Two hypercomplex structures {Jj, J2} and { J~, J~} on ,q are said to be equivalent if there 

exists an automorphism q~ of  ,q such that ~b J,, -- J~ ~b for ~ = 1, 2. 

There is an action of  SO(3) on the set of  hypercomplex structures on ,q as follows: given 

A = (aij) in SO(3) and 7-/={J1, J2} we define 

A . 7-[ = al~Ja,  a2, , 

where J3 = J1 J2. It is not hard to check that A • 7-/defines a hypercomplex structure on .q, 
3 3 

with (Y-~-~=I alc~Jc,)(Y~,~=l a2aJ~) = Y~-~,=I a3~Ju. 
With the above definitions we can now state the following lemma. 

L e m m a  3.3. Let ~ ={J l ,  J2} and 7-/' = {J~, ~ }  be two hypercomplex structures on t,~. 
(i) I f H  and 7-( lie in the same SO(3)-orbi t  then V 7~ = V~ ' ;  

(ii) i f ~  is equivalent to ~ '  then V ~ is flat (resp. Ricci flat) i f  and only i f V  ~' is. 

Proof. If 7-( and H '  lie in the same SO(3)-orbit, then, since J~ is a linear combination of 

{ J1, J2, J1 J2 }, [Vx ~ , J~ ] = 0 for X in 9, ~ = 1, 2, so by uniqueness of the Obata connection 
we must have V ~'  = V ~ and (i) follows. 
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Next assume there is an automorphism ~b of ~ such that ~b J~ = J~ 4~ for ot = 1, 2. Let R ~ 
(resp. Ric  7~) and R ~ '  (resp. Ric  7~') denote the curvature (resp. Ricci) tensors corresponding 

to V ~ and V 7~', respectively. Now (ii) follows from the following identities: 

7-ff 
v , u  , 

RT~'(ck U, ck V) = d~ RT~ (U, V) d~ -1 , 

Rice'(ok U, qb V) = R i c ~ ( U ,  V),  

fo rU ,  V i n ~ .  [] 

(3.3) 

(3.4) 

(3.5) 

Let ~9.q denote the set of  equivalence classes of  hypercomplex structures on g under 

the equivalence relation defined above. An element of  ~.a is denoted [7-/] where ~ is a 
hypercomplex structure on ~. The action of SO(3)  pushes down to ~.a: given A in SO(3)  

and [7-/] in ~:~ set A • [7-/] = [A • 7-/]. This is easily seen to be a well defined action on ~.~. 

The proof of  the following result is contained in the proofs of  Theorems 3.1, 3.3 and 3.4 

in [4]. 

T h e o r e m  3.4. Let g be a 4-dimensional real Lie algebra admitting a hypercomplex struc- 

ture. Then SO(3)  acts transitively on ©~. 

We proved in [4] that for the Lie algebras described in cases (III) and (V) below, the 
corresponding isotropy subgroup is 0 (2 )  so that there is a bijection of .~.a onto the 2- 

dimensional real projective space g~p2. For the remaining three isomorphism classes of  

Lie algebras, the isotropy subgroup is all of  SO(3)  and therefore the space ,~.~ reduces to a 

single point. 
Theorem 3.4 and Lemma 3.3 imply the following corollary. 

Corol la ry  3.5. Let G be a 4-dimensional real Lie group admitting an invariant hypercom- 

plex structure. Then the following conditions on G are equivalent: 

(i) G admits an invariant integrable hypercomplex structure; 

(ii) every, invariant hypercomplex structure on G is integrable. 

3.1. The 4-dimensional case 

In what follows we will obtain the invariant integrable hypercomplex structures in di- 
mension 4. In [4] we show that a 4-dimensional real Lie algebra admitting a hypercomplex 
structure is isomorphic to one of the following Lie algebras ~: 

(I) g abelian; 
(II) ~ = ~ ~3 ~o(3), where ~ is the center of  g (dim ~ = 1); 

(III) g = b ~3 a, b an abelian ideal, a an abelian subalgebra with bases {X, Y}, {Z, W}, 
respectively, such that: 

[X, Z] = X, [Y, Z] = Y, [X, W] = Y, [Y, W] = - X .  
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(IV) ,q = EA ~3 ,ql, where .q' = [.q, ,q] is abelian and adAl!~, = I; 

(V) ,q = EA @ al @ a2, where .q' = al @ a2 is a Heisenberg algebra with centre a2 and 

adAlai = ( i /2 ) I ,  i = 1, 2, where I denotes the identity on the corresponding vector 
spaces. 

Note that the additive group of the quaternions H has an abelian Lie algebra; the Lie 

algebra of the multiplicative group of non-zero quaternions H* is of  type (II) and the group 

of motions of  C, Aft(C), has a type (III) Lie algebra. Let us denote by S~ (resp. S¢) the 
simply connected solvable Lie group with Lie algebra of  type (IV) (resp. (IV)). It is well 

known (cf. [10]) that Su and Sc act simply transitively on the 4-dimensional real and com- 

plex hyperbolic spaces, respectively. Keeping this notation, we are to prove the following 

result. 

Theorem 3.6. Let G be a 4-dimensional real Lie group. Then: 

(i) G admits an invariant integrable hypercomplex structure if  and only i f  G is locally 

isomorphic to either H, H*, Aft(C) or S~. 
(ii) G admits a non-integrable invariant hypercomplex structure if  and only i f  G is locally 

isomorphic to Sc. 

Proof.  The first step is to determine, for the Lie algebras listed above, which hypercom- 

plex structures are integrable. From Corollary 3.5 we know that, given .q, the integrability 
condition is independent of  the structure we choose, so we shall fix an arbitrary structure 

7-[ on ~q and compute the curvature tensor R n of V 7~ for this single case. To carry out this 

computation we will use the uniqueness of  V 7~ subject to the conditions (3.1) and (3.2) 

instead of the cumbersome formula (2.4). 
In case (I) a hypercomplex structure 7-/on .q is obtained by fixing two endomorphisms 

{JJ, J2} satisfying (1.1) on .q. Conditions (3.1) and (3.2) are trivially satisfied setting V - (L 
then by uniqueness V n = V - 0 and therefore this structure is integrable. 

In case (II) let {Z, X, Y, W} be a basis of,5 ~3 _~o(3) such that Z E ,5 and 

[X, Y] = W, [Y, W] = X, [W, X] = Y. 

We fix the following hypercomplex structure 7- /={J l ,  J2}: 

J j Z =  X, J j Y  = W, J~ = - l ,  

J2Z = Y, J2W = X, J~ = - l .  

The centralizer of {Jl, J2} in End(,q), which is isomorphic to .q[(1, H), has a basis 

{I, J(,  ~ ,  J~} where I is the identity and 

s ; x  = z ,  s ; r  = w ,  s ;  2 = - I ,  

s 'r = z ,  4 w  = x ,  '2 = - i ,  

with J~ = J(J2" Now we compute the Obata connection V 7~. We know from (3.2) that the 
endomorphism Vf f  of .q must be a linear combination of {I, J(,  ~ ,  J~} for all U in .q. The 
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coefficients of  Vff are uniquely determined by Eq. 3.1. It is easy to verify that V ~ is given 

as follows: 

V~  - ~ I ,  Vx ~ ' ' ' ' ~ ' ' = = ~J1, V~  _ _ V w _ . = ~ J ; ,  = ~ J ~ .  

Now one can verify that the curvature tensor R 7~ vanishes identically, hence {J~, ,/2} is 

integrable. 

In case (III) we fix the following hypercomplex structure on 8: 

J1 X = - W ,  JI Y = Z, J?  = - I ,  

J2X = Y, J2Z = - W ,  j2  = - I .  

By similar arguments to those in case (II) one gets that (3.1) and (3.2) determine the Obata 

connection V ~ uniquely by 

V f f = 0 ,  V ~ = 0 ,  V ~ = - I ,  V w ~ = J ,  

where J is given by 

J Y  = X,  J W  = Z ,  j 2  = - I .  

It is easily checked that if R R vanishes identically, then {Jl, J2} is integrable. 

In case (IV) we consider a basis {X, Y, Z} of ¢ and we may assume {JI, J2} is given by 

J tY = Z, J~ = - I ,  

J2Z = X,  J~ = - I .  

J j A  = X ,  

J2A = Y, 

We set 

VA ~ = I, Vv ~ = 0 ¥V ~ 8' 

and one verifies at once that Eqs. (3.1) and (3.2) are satisfied. Thus V ~ is the Obata 

connection associated to {dl, `/2} and clearly R ~ = 0, therefore {dl, ,/2} is integrable. 

The above calculations and Corollary 3.5 imply that every hypercomplex structure on 

is integrable in cases (I)-(IV). The proof of  the theorem will therefore be complete if 

we show that the Obata connection arising from case (V) is non-flat. Let a2 = ~ Z  be the 

center of  8' and { X, Y } a basis of  a I such that [X, Y] = - [ Y, X] = Z. We fix the following 
hypercomplex structure {,/1, ,/2} on ~: 

dlA = Z,  `/1Y = X,  `/~ = - I ,  

Joa C2- X,  J2Z = ~ Y, J~ - I .  

We compute the Obata connection using the same idea as in case (II). If I is the identity on 
8, let {I, J~, J~, J~} be the following basis of  the centralizer of  {J1, ,/2}: 

J ; Z  = A,  s ; r  = X,  j (2 : - I ,  

J ~ A = - 4  X,  J I2Z= ~2 Y , J ~ 2 = - I  
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and J'3 = J( ~ "  Combining Eqs. (3.1) and (3.2) we obtain the Obata connection: 

I, = ¼ J, ,  4 - -  - - 7 -  3" 

Now, observing that J( and J~ anticommute and J'J'3 1 = J~'_ we compute R n ( Y ,  Z)  = 
t 

~ [j~,  J(] = ~ , v ~ I--fi . - 8  J2" Hence is not flat and therefore {Jj, J2} is not integrable. We 
conclude from Corollary 3.5 that no hypercomplex structure on .q is integrable. Observe 
that tr(Vi~) = 0 for all U in [~, .q], so Lemma 3.2 implies that V 7~ is Ricci flat. [] 

The ~-valued bilinear form V ~ of case (V) above extends to a left invariant torsion-free, 

non-flat, Ricci flat connection on Sc. It follows from the results of  [ 16] that this connection 

is self-dual. Observe that Sc acts simply transitively on ~4 (cf. [10]), therefore V ~ can 
be transferred to ~4 having Sc as a group of affine transformations. Since V ~ is non-flat, 

Ricci flat it follows that it is not projectively flat and it can be shown that V ~ R  ~ ~ 0, that 

is, V ~ is not locally symmetric. This paragraph can be summarized as follows. 

Proposi t ion 3.7. [~4 carries a torsion-free, self-dual, non-flat, Ricci flat affine connection 

having a simply transitive soh,able group o f  affine transformations. 

Remark 3.8. I f  G is locally isomorphic to either H*, Aft(C),  S~ or Sc, and 7-[ is an invariant 

hypercomplex structure on G it follows that V 7-t is not a metric connection, in other words, 

there is no left invariant metric on G having V 7~ as its Levi-Civita connection (we do not 

require the metric to be positive definite). We prove this assertion for  the case o f  S~ (the 

remaining cases have analogous proofs). I f  there existed a non-degenerate bilinear.form 

(,) on ,q having V 7~ as its Levi-Civita connection, then we would have 

(V~U.  A) = ([A, U], A) (3.6) 

for  all U ~ q,, where A is as in case (V) above. The left-hand side o f  (3.6) is equal to 

3 (U, A) and the right-hand side is O, ½(U, A) or (U, A) depending on U = A, U in al or 

U in a2, respectively. This implies (A, q~) = O, which is impossible since (,)  was assumed 

to be non-degenerate. 

The above remark shows that our examples are in sharp contrast with the case when the 

Obata connection has non-degenerate Ricci tensor and zero Weyl curvature. Indeed, accord- 
ing to results of  Alekseevsky and Marchiafava [2] in the latter case the Obata connection is 

the Levi-Civita connection of a pseudo-quaternionic K~ihler metric. 

Remark 3.9. Given an arbitrary real Lie algebra ~ let V denote the following bilinearform 

on .q." ~Ts Y = 1 [X, Y] (this is the canonical torsion-free connection, or (O)-connection; cf  

[8]). Then the curvature and Ricci tensors corresponding to V are easily seen to be equal 

to 

1 Ric(X ,  Y) = _ l  B(X,  Y). R(X,  Y) = - ~  adix.Y], 
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where B denotes the Killing form on 0. Observe that V is flat if and only if o ' C ~ (or, equiva- 
lently, if and only if ~ is 2-step nilpotent) and it is Ricci flat if and only if B ==- O. Therefore V 

is neitherflat nor Ricci flat in cases ( I I ) - (V)  above. In particular, the connections associated 
to hypercomplex structures on those Lie algebras cannot be equivalent to V. 

4. A distinguished Gl(n, H)-connection 

In this section we introduce an affine connection associated with a special class of hy- 
percomplex structures and relate it with the Obata connection (Theorem 4.1). 

We say that an almost hypercomplex structure {JI, J2} on g is abelian [9,17] when 

[J~X, JaY] = [X, Y] for all X, Y E 0, ot = 1, 2. Note that this condition is stronger than 
the vanishing of Na, ce = 1, 2, so in particular {Jl, J2} is hypercomplex. Observe that if 7-/ 

is abelian then [JzX, J:Y] = [X, Y] for all z = (Zl, z2, z3) in the Euclidean 2-sphere S 2, 
3 where J- = Y:-~=I zaJa and J3 : -  J1 J2 as usual. 

Theorem 4.1. Let ~ ={J1, Je} be an almost hypercomplex structure on 0. There exists a 

unique affine connection V ~'ab satisfying the following properties: 
(i) VT-g'abjc~ = 0, ot = l, 2, 

(ii) TT~'ab(s, Y) 3TU(X,  y)  + ½ 3 = ~ = l ( [ X ,  Y] - [J~X, J~Y]) fora l lX ,  Y ~ 0. 

Proof. Set 

~ . a b  1 adx - JcL adx Jc~ (4.1) 
f f = l  

where adx(Y)  = [X, Y] for all X, Y ~ g and J3 = J] J2. It follows that V ~'ab satisfies the 

required properties. The uniqueness follows from the fact that any connection satisfying (i) 
is entirely determined by its torsion. [] 

3 X = - . Set ATe(X, Y) = )--:~a=l ([ , Y] - [J~X, J~Y]), so that T ~'ab 3T ~ + ~A 7~ 

Corol la ry  4.2. Let 7 - /={J l ,  ./2} be an almost hypercomplex structure on 0. The following 
conditions are equivalent: 

(i) V ~'ab is torsion-free; 
(ii) A ~ ---- 0; 

(iii) 7-/is abelian. 

Proof.  Assume (i) holds. Then Theorem 2.2 implies that V 7"('ab = V 7-g and (ii) follows 
from the above theorem. 

If  (ii) holds then 

3[X, Y] = [J1X, J1Y] + [J2X, J2Y] + [J3X, J3Y], 

3[ J] X, J1Y] = [J1J]X,  JI J1Y] + [ J2 JI X, J2 JI Y] + [ J3 JI X, J3 JI Y] 

= [X, Y] + [J3X, J3Y] + [J2X, J2Y] 
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and therefore 3([X, Y] - [Jl X, J1Y]) = [Jl X, JI Y] - [X, Y]; hence [JI X, Jl Y] = [X, Y] 

for all X, Y E ~. An analogous proof gives [J2X, J2Y] = [X, Y], that is ~ is abelian. 

We finally show that (iii) implies (i). If  7-/is abelian then clearly A 7~ --= 0 and, since 7-/ 

is hypercomplex, we also have T ~ ----- 0; hence T ~'ab =- O. [] 

The following corollary is a straightforward consequence of  (4.1) and Lemma 3.2. 

Corollary 4.3. IfT-[ is abelian then V ~ is Ricci flat. 

Corollary 4.4. Let ~ be a Lie algebra with dim [.q, ~] ~< 2 and 7-[ a hypercomplex structure 

on g. Then V 7-t is Ricci flat. 

Proof. We proved in [5] that any hypercomplex structure on .q must be abelian and now the 

result follows from the previous corollary. [] 

5. Integrability of hypercomplex structures on solvable extensions of 2-step nilpotent 
Lie algebras 

Let n be a 2-step nilpotent Lie algebra, that is, [n, n] C ,5 where ~ is the center of H. 

Assume that n admits a hypercomplex structure 7-/. The following result gives a sufficient 

condition for 7-( to be integrable (see also [9]). 

Proposition 5.1. I f  ~ is Ja-stable. c~ = 1, 2, then 7-[ is integrable, that is, V ~ is flat. 

Proof. It follows from (2.4) that V~  = 0 for all Z in ,3 and V~ Y E ,3 for all X, Y in 

ii. Since V ~ is torsion-free we also have Vx ~ 1.~ : 0 for all X in n. It now follows that 

R ~ - - 0 .  [] 

Corollary 5.2. Any abelian hypercomplex structure on n is integrable. 

Proof. The corollary follows from the above proposition, since any abelian hypercomplex 

structure leaves ~ invariant. [] 

The above corollary implies, in particular, that all of the structures constructed in [3] are 

integrable, hence the corresponding connections are flat. 
We next consider a family of  3-step solvable extensions of 2-step nilpotent Lie algebras. 

Let n = ,3 • v be a 2-step nilpotent Lie algebra and set 6 = ~A ~ n. If  we extend the 

Lie bracket to d by adAl,~ = I and adAI, = ~I ,  then .~ becomes a 3-step solvable Lie 

algebra. 

Proposition 5.3. Let ~ = {J1, J2} be a hypercomplex structure on ~_ leaving both ~ A  ~ 

and ~ stable and such that J~A ~ 3, ot = 1,2,  3 (J3 = J l  J2) .  Then 7-[ is integrable. 
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Proof. R A ~  is a totally geodesic hypercomplex subalgebra and it follows that VA 7-/IRA~ = 

I ,  VAil, = 11 and Vz ~ = 0 forall Z E ~. Since V ~ is tors ion-freei t  follows that ~v~I~A~)~ = 

0 for every V ~ ~. Eq. (2.4) implies that Vv~ W 6 RA @ ~ for all V, W E D. Using all these 

facts it is not hard to verify that R(X ,  Y) = 0 for all X, Y 6,3. t2 

We exhibit in [5] hypercomplex structures satisfying the hypothesis of  the above 

proposition. 

On the other hand, the corresponding solvable extension of  the Heisenberg algebra carries 

a non-integrable hypercomplex structure. This will follow from the 4-dimensional case 

(Theorem 3.6). Indeed, let n be the (2n + 1)-dimensional Heisenberg algebra (with odd n) 

and 8 the solvable extension considered above. Fix a basis {Z, X1, Y1 . . . . .  Xn, Y~} of n 

such that [Xk, Yk] = Z. Set ~ = span{A, Z, X1, Y1 } and ~ = span{X2, Y2 . . . . .  Xn, Yn}. 

Proposition 5.4. Let 7- /=  {Jl, J2} be a hypercomplex structure on d leaving both g and ro 

stable. Then V 7-t is non-flat, Ricci flat. In particular, 7-I is not integrable. 

Proof.  Since ~ is the 4-dimensional Lie algebra of  case (V) (Theorem 3.6) and it is a totally 

geodesic hypercomplex subalgebra of  ~, we have that the connection V ~ is given as follows 

on ~, where J~, ot = 1, 2, 3, are as in Theorem 3.6: 

: : , : t Vy I [a : "4- J3, 

and therefore V ~ is non-fiat. Using Eq. (2.4) one can also check that 

I, V V I,L, 0, 

V~ W 6 ~ and Vv I.q = 0 for all V, W 6 to. It follows that tr(Vu ~)  = 0 for all U E [~, ~], 
then Lemma 3.2 implies that V 7~ is Ricci fiat. [] 

Remark 5.5. A hypercomplex structure satisfying the hypothesis o f  the above proposition 
was constructed in [5]. 
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